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Abstract

It has been argued many times that syntactical movement, in the form of leftward extraposition and wrapping
discontinuous constituents, is of such a crucial importance that there is a need to develop grammar formalisms
aimed solely at a clear and concise treatment of these phenomena.

Along the guiding lines of a number of examples of Dutch verb phrase structure, I first discuss head grammar
(HG) and show that it inherently lacks the strong generative to describe even very simple fragments of complete
Dutch sentences. I then make, in three steps, a progression from linear context-free rewriting systems (LCFRS)
to literal movement grammar (LMG), and show that in contrast to the general feeling about LCFRS, the resulting
formalism is an attractive and adequate tool for describing concrete fragments of configurational languages with
a nontrivial surface structure.

1 Introduction

In recent years there has been considerable interest for ‘light’ grammar formalisms; most notably tree ajoining
grammar (TAG), but also for linear indexed grammar (LIG) as a platform for implementing TAG parsing methods
[VSW94] and as a basis for restricted unification grammars [KW95], and to a lesser degree for head grammar (HG,
[Pol84]), its formal generalizations linear context-free rewriting systems (LCFRS, [Wei88]) and parallel multiple
context-free grammars (PMCFG, [KNSK92]), and finally extraposition grammar (XG, [Per81]).

These systems have in common that they are elementary extensions or progressions of the context-free gram-
mars; indeed most of the formalisms mentioned generate mildly context-sensitive languages. One of the motivations
for such grammar formalisms is that in order to study the real theory-independent nature of certain, especially struc-
turally oriented, linguistic phenomena, it is interesting to investigate precisely how much formal power is necessary
for an adequate description. Another motivation often mentioned is a dissatisfaction with the sometimes very ad
hoc or feebly theoretically founded methods of describing movement found in popular feature-based frameworks,
such as slash threading. For example, Pereira in [Per81] gives the following motivation for the XG formalism:

“The importance of these [extraposition] constructions, even in simplified subsets of natural language,
such as those used in database interfaces, suggests that a grammar formalism should be able to express
them in a clear and concise manner.”

Nevertheless, formalisms such as head grammar (and especially the weakly equivalent tree adjoining grammars)
seem to be primarily interesting to abstract formal language theory, and as such have not been backed up by many
examples of their concrete use in linguistic descriptions. Where such descriptions are given (e.g. in [Pol84]), they
are largely aimed at an account of English, or minimal, strongly isolated fragments of more complex languages such
as Dutch. The complexity of English surface structure is too limited to give a faithful account of the adequacy of
a surface structure description method. This paper shows that this can lead to (1) exceedingly ad hoc conceptions
of discontinuous constituency and (2) formalisms that lack the (strong) generative capacity to give satisfactory
structural descriptions of more surface-complex configurational languages such as Dutch and German.

The emphasis in this paper is on head grammar (HG), two extensions (LCFRS, LMG), and the view on linguistic
structure imposed by those formalisms.
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2 Extraposition and discontinuous constituency

Before a discussion of discontinuous constituency and syntactical movement, it is worth noting that it is a concept
which strongly depends on the notion of a constituent itself. In transformational accounts of language, the meaning
of the word constituent varies depending on what structure one is looking at (s-structure, d-structure, LF). In LFG,
the sentence corresponding to a c-structure (assuming that the c stands for constituent) is read off the tree from left
to right, hence a constituent in LFG always seems to form a contiguous substring of a sentence, and the existence
of discontinuous constituents is meaningless if not contradictory.

The most wide-spread examples of what the literature calls a discontinuous constituent are probably phrases
such as hard to motivate in

Frank is a hard person to motivate:(1)

The underlying idea is apparently that there is a generally accepted tree structure inspired by functional concepts
such as heads, complements and modifiers (X-bar theory if the reader wishes). Constituents are then obtained by
putting together the words at the leaves of arbitrary subtrees. A sensible account of English will recognize hard to
motivate as an adjectival phrase that modifies the nominal projection person, hence person and hard to motivate
must be represented by separate subtrees, and they must be separate constituents.

Another way of reasoning is that we want the adjectival phrase hard to motivate in sentence (1) to be represented
in the same way as in (2).

Frank is hard to motivate:(2)

There are roughly two explanations in existence. The transformational view is that to motivate is extraposed or
moved rightward out of its deep-structural position. The other explanation calls it a phenomenon of discontinuous
constituency and says that the constituent hard to motivate will wrap itself around a noun phrase when it modifies
it.

Now consider the following sentences.

Did Eve eat the apple(3)

Eve did eat the apple(4)

An elegant description would probably consider the phrase headed by eat as a complement to did, and assign the
same (deep-) structural analysis to did eat the apple in both examples. Again, this might equally well be explained
as movement of the verb did or by saying that did eat the apple is a discontinuous VP constituent that can wrap
itself around its subject.

The same remarks can be made about topicalized sentences. The following are borrowed from [Pol84] on head
grammar:

Smith sent Jones to Minsk(5)

Minsk, Smith sent Jones to(6)

Jones, Smith sent to Minsk(7)

Although it may be harsh to strictly pose that sent Jones to Minsk is a constituent in all three sentences, it seems
reasonable to suppose that a grammar formalism designed to adequately describe movement and discontinuity
should use its structural capacities to give a model of these sentences. However, the head grammar fragment
sketched in [Pol84] reverts (necessarily, as we will soon see) to a SLASH feature to treat topicalization.

3 Crossed dependencies in Head Grammar

[Pol84] presents an extensive treatment of discontinuousconstituency in English, includingexamples such as Frank
is a hard person to motivate. Pollard also gives a description of Dutch crossed dependencies in an appendix (a
similar HG analysis is discussed in this paper). However, the accounts of English and Dutch are both limited: the
fragment of English discussed does not treat auxiliary inversion, and that of Dutch only talks about the verb phrase,
leaving verb second phenomena undiscussed.
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Except for the very simple case of subject-auxiliary inversion, English is a language with a highly ‘local’
verb structure: sentences with embedded verbal projections always consist of verbs immediately followed by their
complements:

John [VP[V saw Mary [V teach Fred [V to swim ]]]](8)

For the study of movement and discontinuity phenomena, Dutch is a much more interesting language. Dutch is
very strict about which surface forms are acceptable, yet it shows a great diversity in verb phrase order. The most
frequent order is that of crossed dependencies: the verb phrase is split up into a nominal cluster and a verb cluster:

. . . dat
that

Jan [VP[NC Marie Fred ] [VC zag
saw

leren
teach

zwemmen
swim

]]
. . . that John saw Mary teach Fred to swim

(9)

However odd the surface structure of Dutch may be, the underlying functional head-complement structure is still
present—be it that each V is somehow divided into two parts: one that selects to appear in the NC, and one that
selects to appear in the VC. This is exactly reflected in the way [Pol84] describes Dutch crossed dependencies, and
reflects the way in which the methods proposed in this paper will describe movement and discontinuityphenomena
in general: the choice of consistituents is fully motivated by their deep-structural characteristics, and in order to
obtain the correct surface forms, we split up the yield of constituents into a number of clusters which select to appear
in different positions in the generated sentence. We hence more or less abandon the concept of surface structure,
taking deep structure as a point of departure and viewing surface forms as obtained from this deep structure by
concatenation of the different clusters yielded by its constituents. This is equivalent to saying that the concepts
of movement and discontinuity are not sufficiently general, and we should rather think of producing surface forms
as giving rules for placement of clusters or “subconstituents” with no meaningful structural representation of their
own.

Head Grammar assigns a special role to the position of the head of a constituent in the construction of its surface
form from a deep-structural representation. It splits up the yield of a nonterminal into two parts, which can appear
at different places in the derived string.

Definition. A (modified) head grammar (HG) is a tuple (N; T; S; P ), where the productions in P are of the formA ! hw1; w2i where A 2 N , w1; w2 2 T � or A ! f(B1; B2) where B1; B2 2 N , and the yield function, f , is
one of the function symbols wrap, concat1 or concat2. A head grammar G recognizes pairs of terminal strings, as
follows:

Base case If A! hw1; w2i is a grammar rule, then A G=) hw1; w2i
Inductive case IfA! f(B1; B2) is a rule inG,B1 G=) hu1; u2i andB2 G=) hv1; v2i, thenA G=) f(hu1; u2i ; hv1; v2i)

where wrap(hv1; v2i ; hw1; w2i) = hw1v1; v2w2iconcat1(hv1; v2i ; hw1; w2i) = hv1; v2w1w2iconcat2(hv1; v2i ; hw1; w2i) = hv1v2w1; w2i
The underlying intuition is that a tuple hw1; w2i, represents a constituent w1w2 whose head is the first terminal ofw2. V ! concat2(NP; VT)VT ! wrap(VR; V)NP ! h�;Mariei j h�;koffieiVT ! h�;drinkeniVR ! h�;zagi

Figure 1: HG for transitive and raising verbs in Dutch.
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The HG shown in figure 1 gives an analysis, similar to the one found in [Pol84], of crossed dependencies in
Dutch. The head of a V is its leading verb, so the yield of a V is a tuple whose first component is a sequence of
NPs (the nominal cluster) and whose second component is a series of verbs (the verb cluster). The first of the noun
phrases is the direct object of the head verb. The derivation tree for the verb phrase Marie koffie zag drinken (saw
Mary drink coffee) is shown in figure 2. This HG analysis of the cross-serial verb phrase emphasizes elegantly""""" llll """"" llll""""" llllV(Marie koffie; zag drinken)NP(�; Marie)VR(�; zag)NP(�;koffie)VT(koffie; zag drinken)V(koffie; drinken)VT(�;drinken)

Figure 2: HG derivation.

both the underlying functional or deep structure of the verb phrase, and the way the surface form of a Dutch VP
is constructed. It is therefore surprising to see that no attempts have been made to apply the very same method to
other similar phenomena, such as verb second forms and leftward nominal extraposition.

The question why this has not been done is easily answered. [Pol84] needs a SLASH feature to model leftward
extraposition, because the head grammar formalism is too weak to treat both verbial and nominal discontinuity at
once. The same is true for fronting of the head verb (Dutch verb second or English auxiliary inversion).

Suppose for example that want to extend the account of the VP to produce full Dutch sentential forms (verb
second in (10b) and (10c) and topicalization of the first object in (10d)):a: . . . dat Jan Marie koffie zag drinken

. . . that John saw Mary drink coffeeb: Jan zag Marie koffie drinken
John saw Mary drink coffeec: Zag Jan Marie koffie drinken?
Did John see Mary drink coffeed: Wie zag Jan koffie drinken?
Who did John see drink coffee?

(10)

If we want these four examples to get the same VP analysis, we see that we need to split the VP up into at least
three components, i.e. the finite verb zag, its direct object wie/Marie and the remaining frame koffie drinken, in
order to produce the surface forms through concatenation and wrapping.

So an extension of head grammar which splits up the yield of a constituent into more than two parts seems to
provide the required power for describing more complex surface structure phenomena, at the expense of losing
the linguistically flavoured motivation in terms of the role of heads. This is precisely what we will do in the next
section.

4 Linear Context-Free Rewriting Systems

Linear context-free rewriting systems (LCFRS, [Wei88]) are a generalization of head grammar to arbitrary linear,
non-erasing operations over tuples of arbitrary arity:
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Definition. A linear context-free rewriting system (LCFRS) is a tuple (N; T; �; S; P ) where N; T and S are as
for HG; � : N ! N is the similarity type that assigns an arity to each nonterminal, �(S) = 1 and P is a set of
productions of the formA ! f(B1; : : : ; Bm)
where m � 0, A;B1; : : : ; Bm 2 N , and the yield function f is a linear, non-erasing function over tuples of
terminal words, that is, f : ((T �)�(B1); : : : ; (T �)�(Bm))! (T �)�(A) can be defined symbolically asf(hx11; : : : ; x1�(B1)i; : : : ; hxm1 ; : : : ; xm�(Bm)i) = ht1; : : : ; t�(A)i
where tk are strings over terminals and the variables xij, and each of the xij appears precisely once in t1; : : : ; t�(A).

LCFRS derivation is exactly analoguous to HG derivation as defined in the previous section, be it that we apply
arbitrary linear and nonerasing operations to arbitrary tuples of terminal words.

Linear context-free rewriting systems are generally thought of as a generalization of the HG family in a formal
language setting, and it is rarely found in the literature as a tool for describing natural language. First of all they
are considered difficult to work with. Furthermore, by allowing arbitrary tuples and arbitrary operations, LCFRS
have lost the very linguistically based status of HG, where the division of a constituent into two components is
determined by the position of its head.S ! f1(NP;V) where f1(p; hn; m; v; wi) = hdat p nm vwi)S ! f2(NP;V) where f2(p; hn; m; v; wi) = hp v nm wi)S ! f3(NP;V) where f3(p; hn; m; v; wi) = hv p nm wi)S ! f4(NP;V) where f4(p; hn; m; v; wi) = hn v p m wi)V ! f5(VT;NP) where f5(t; p) = hp; �; t; �i)V ! f6(VR;NP;V) where f6(r; p; hn; m; v; wi) = hp; nm; r; vwi)NP ! hJani j hMariei j hkoffieiVT ! hdrinkeniVR ! hzagi

Figure 3: LCFRS for Dutch crossed dependencies, verb second and topicalization.������� PPPPPPP��� ������ HHHHHHQQQQ�������S(wie zag Jan koffie drinken) = f4(Jan; hwie;koffie;zag;drinkeni)NP(Jan) VT(drinken) NP(koffie)VR(zag) NP(wie) V(koffie; �;drinken; �)) = f5(drinken;koffie)V(wie;koffie;zag;drinken) = f6(zag;wie; hkoffie; �;drinken; �i)
Figure 4: LCFRS derivation of Wie zag Jan koffie drinken?

To illustrate why LCFRS is generally considered as a “difficult” grammar formalism, figure 3 shows1 a very
basic LCFRS which describes the dutch cross-serial VP and four sentential forms including verb second and1The grouping of the variable pairs nm and vw is suggestive notation without a formal status—it serves to stress that these couples, when
taken together, represent the nominal cluster and verb cluster from the previously given HG grammar.
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topicalization. It is a straightforward extension of the HG from the previous section, in that it still divides the verb
phrase into a nominal cluster and a verb cluster; but it splits up both clusters into two components. A verb phrase
is now a four-tuple hn;m; v; wi consisting of a direct object n or the head of the nominal cluster, the rest of the
nominal cluster m, the head verb v, and the rest of the verb cluster w. An example derivation is given in figure 4.2

Because an LCFRS production is divided into a “context-free production” and the definition of the yield
function, it takes some time to understand a grammar; one has to identify which variables in the function definition
are referring to which elements of the RHS of the context-free production. Nevertheless this paper will show,
in three steps, how we can modify LCFRS so as to obtain a very attractive tool for the description of movement
constructions. The first step is to eliminate the yield functions as elements of the grammar.

Step 1. Alternative definition. An LCFRS in definite clause notation is a tuple (N; T; V; �; S; P ) with N; T; �
and S as in the standard definition; V is a set of variable symbols disjoint with N and T , and the productionsR 2 P are of the formA(t1; : : : ; t�(A)) :- B1(x11; : : : ; x1�(B1)); : : : ; Bm(xm1 ; : : : ; xm�(Bm))
where ti and xij satisfy the same conditions as in the previous definition of LCFRS.3
The alternative definition provides, in a much more compact notation, the information of an LCFRS, except that
the names of the yield functions have disappeared. Since the choice of yield functions in LCFRS does not seem to
be so well motivated (it is unrestricted) as it is in head grammar, this can hardly be considered a disadvantage. The
alternative notation does add an essential amount of readability to a grammar. In fact it looks considerably more
like an annotated context-free grammar, be it that the order of the items on the RHS of a production is irrelevant.
Figure 5 shows the alternative form of the LCFRS from figure 3.S(dat p nm vw) :- NP(p); V(n; m; v; w)S(p v nm w) :- NP(p); V(n; m; v; w)S(v p nm w) :- NP(p); V(n; m; v; w)S(n v p m w) :- NP(p); V(n; m; v; w)V(p; �; t; �) :- VT(t); NP(p)V(p; nm; r; vw) :- VR(r); NP(p); V(n; m; v; w)NP(Jan):VT(drinken):: : :

Figure 5: The LCFRS in definite clause notation.

The second step is the only step which elevates the generative capacity of the formalism (but not the complexity
of fixed recognition, see [Gro95b]). We will present it here without providing formal background. The more
mathematically inclined reader is referred to [Gro95a] in which the formal properties of CPG are discussed at
length.

Step 2. Definition. A simple concatenative predicate grammar (CPG) is obtained by relaxing the definition of
LCFRS as follows. For a productionA(t1; : : : ; t�(A)) :- B1(x11; : : : ; x1�(B1)); : : : ; Bm(xm1 ; : : : ; xm�(Bm))
we merely require that each of the variables xij occurs at least once in t1; : : : ; t�(A).2Note that the SOV structure from the HG analysis has been changed to SVO in the LCFRS example—preferable for reasons of uniformity
as this is the underlying structure of English; the order of the elements on the RHS of an LCFRS production is irrelevant, so the distinction
SVO/SOV in an LCFRS setting is no more than an issue of cosmetics.3The use of the :- symbol in preference to! is motivated as follows: a Prolog clause can be inferred easily by replacing each term in
a production with two integer indices. This corresponds to the construction which translates CPG as defined below into ILFP [Rou88] in the
proof that CPG has a fixed recognition problem in PTIME [Gro95b].
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An informal characterization of a CPG is that it is an LCFRS in which the yield functions are replaced by
arbitrary yield relations. It is shown in [Gro95b] that the language recognized by an arbitrary given simple CPG4
is recognisable in time polynomial in terms of the size of the input. Although CPG preserve polynomial time
recognition, they are considerably stronger than LCFRS. They are e.g. capable of describing the Chinese number
names of [Rad91] (see [Gro95b]).

Here we will illustrate the added strength by an account of co-ordination. By adding the following rule, which
is no longer a valid LCFRS rule because of the shared variable v on its right hand side:S(p v n1m1 w1 en n2m2 w2) :- NP(p); V(n1;m1; v; w1); V(n2;m2; v; w2)
to the grammar in figure 5, we can account for sentences such as

Jan zag
saw

Marie koffie
coffee

drinken
drink

en
and

Fred een koekje
a biscuit

eten
eat

.

John saw Mary drink coffee and (saw) Fred eat a biscuit.

(11)

5 Literal Movement Grammar

The third step in the extension of LCFRS is again one of notation. The grammars shown in the previous section
leave a strong linguistic notion implicit: the notion of a strictly left-to-right concatenative backbone that is never
subject to movement. In the case of our examples, the verb phrase contains one extremely “stable” cluster, viz. the
final verbal cluster. In each of the S-productions, the verb cluster appears last in the full sentence.

We will now show that a formalism equivalent to simple CPG, the simple literal movement grammars (LMG)
[Gro95c], again give a considerable improvement in readability to the grammars under investigation, by separating
a cluster to which the effect of the yield functions is restricted to simple left-to-right concatenation. A simple
explanation of the effect of a translation to LMG is that as far as possible, the part of the sentence that is not subject
to movement is treated in exactly the same way as it is in a context free grammar.

Step 3. Definition. A simple literal movement grammar is a tuple (N; T; V; �; S; P ), where N; T; V; � and S are
as for definite clause LCFRS;� A term t 2 (T [ V )� is any sequence of terminals and variables.� An item is one of the following:

A terminal a 2 T
A variable x 2 V
A simple predicate A(x1; : : : ; xn) where A 2 N and x1; : : : ; xn 2 V .

A slashed predicate (A(x1; : : : ; xn)=y) where y 2 V .� A productionR 2 P is of the formA(t1; : : : ; tn) ! 	1 � � �	n
where A 2 N , t1; : : : ; tn are terms and 	1; : : : ;	n are items, such that any variable occurring in a simple
or slashed predicate 	i occurs either as another item 	j on the RHS, or in one of the terms ti.

An instantiated predicate is a nonterminal A with �(A) terminal arguments A(w1; : : : ; wn) or a slashed formA(w1; : : : ; wn)=v. By substituting a terminal word w for each of the variables x in an LMG production we obtain
an instantiated productionA(w1; : : : ; wn) ! �
where � is a sequence of terminal symbols and instantiated predicates.

An LMG G recognizes a word w if S G=) w can be derived by the following inductive system:4Note that this is a property, complexity of fixed recognition, of a class of languages rather than of a grammar formalism.
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Base case If A(w1; : : : ; wn) ! � is an instantiation of a production in G, thenA(w1; : : : ; wn) G=) �
Inductive stepsA(w1; : : : ; wn) G=) � B(v1; : : : ; vm) 
 B(v1; : : : ; vm) G=) uA(w1; : : : ; wn) G=) � u 
A(w1; : : : ; wn) G=) � (B(v1; : : : ; vm)=u) 
 B(v1; : : : ; vm) G=) uA(w1; : : : ; wn) G=) � 

While the formal definition of LMG is a bit clumsy, and it is easy to show that it is in fact merely a different notation
for simple CPG [Gro95a], grammars in the LMG system are generally elegant and understandable.Rel ! dat NP nm v V(n;m; v)S ! NP v nm V(n;m; v)S ! v NP nm V(n;m; v)S ! n v NP m V(n;m; v)V(p; �; t) ! (VT=t) (NP=p)V(p; nm; r) ! (VR=r) (NP=p) v V(n;m; v)NP ! JanVT ! drinkenVR ! zag: : :

Figure 6: The definite clause LCFRS as a literal movement grammar.

The LMG in figure 6 is equivalent to the definite clause LCFRS from figure 5. A V in the new grammar takes one
argument less—the verb cluster which we have already argued is really part of the surface backbone of the sentence,
is now produced as the yield of the V. In other words, a predicate V(n;m; v)will recognize aV constituent missing
the clusters n, m and v. These arguments are terminal strings which, in the informal justification of the grammars
we write, select for (optional) extraposition.

6 An LMG account of Dutch verb structure

The grammars discussed so far treat transitive and raising verbs, S-relative, declarative and interrogative sentences,
and topicalization of the first object. The following two LMG fragments extend the grammar from the previous
sections with accounts of a number of fairly sophisticated forms of Dutch verb order.

Fragment 1

As in English, not only the first object in the VP can be topicalized, as in (12), but also any other.

Wie
who

zag
saw

Jan koffie drinken?

Who does John see drink coffee?

(12)

Wat
what

zag Jan Marie drinken?

What does John see Mary drink?

(13)
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Furthermore, not all verb phrases have an object at all, and so far there was only a single bar level V. Introduce a
category VP as follows:VP(n; v) produces a verb phrase missing the clustersn : empty or a single noun phrase that strictly selects for topicalized position.v : empty or a single finite verb that strictly selects for first or second position.

The following sentential productions can now be stated.5
(s-rel) S ! dat NP VP(�; �)
(s-decl) S ! NP v VP(�; v)
(s-inter) S ! v NP VP(�; v)
(s-topic) S ! n v NP VP(n; v)
The verb phrase immediately dominates one or more V’s, which are roughly as in the previous section:V(n;m; v) produces a level one verbal projection missing the clustersn : empty or a single noun phrase that strictly selects for topicalized position.m : a series of objects that selects to be placed within the VP but left of the yield of the V.v : the heading verb

This definition allows us to incorporate a limited account of binary conjunction at VP level:

(vp-v2) VP(n; v) ! m V(n;m; v)
(vp-fin) VP(n; �) ! m v V(n;m; v)
(vp-v2-conj) VP(n; v) ! m1 V(n;m1; v) en m2 V(n;m2; v)
(vp-fin-conj) VP(n; �) ! m1 v1 V(n;m1; v1) en m2 v2 V(n;m2; v2)
The V is produced by the following rules:

(vi) V(�; �; v) ! (VI=v)
(vt) V(�; n; v) ! (VT=v) (NP=n)
(vt-top) V(n; �; v) ! (VT=v) (NP=n)
(aux) V(n;m; v) ! (Aux=v) w V(n;m;w)
(vr) V(p; nm; v) ! (VR=v) (NP=n) w V(p;m;w)
(vr-top) V(n;m; v) ! (VR=v) (NP=n) w V(�;m;w)
In all rules, the newly introduced verb becomes the head verb cluster v. Note that only the recursive productions
(aux1), (vr1) and (vr1top) yield a nonempty string, that is they instantiate the head verb cluster w of the daughterV. For the verb types which introduce an object (VT and VR), there are separate rules for topicalization; (vr) takes
an arbitrary daughter V and carries over its topicalized object p, and (vr-top) takes a V which does not select for
topicalization (its topic cluster is empty), and puts the object n of the VR in the topic cluster. Figure 7 shows the
derivation of Jan zag Marie Fred leren zwemmen (John saw Mary teach Fred to swim).5These productions use a construction which falls outside the scope of simple LMG: they use an empty string in predicates on the right
hand side of a production. However, this extension is obtained for free: a production A ! B(�) can be replaced by the two simple LMG
productionsA! x Empty(x) B(x) and Empty(�)! �.
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S ) Jan zag Marie Fred leren zwemmen
NP ) J. VP(�;zag) ) Marie Fred leren zwemmenV(�;Marie Fred;zag) ) leren zwemmen

VR ) zag NP ) M. V(�;Fred;leren) ) zwemmen
VR ) leren NP ) F. V(�; �;zwemmen) ) �

VI ) zwemmen

Figure 7: LMG derivation in Fragment 1.

Although the most frequently occurring verb order in Dutch is that of crossed dependencies, there are some
exceptions. An extraposition verb (VE), like verbieden, selects for a full VP complement to appear to its right:a: . . . dat de dokter [VP Jan verbiedt

disallows
[VP Anne te bezoeken

to visit
]]

. . . that the doctor does not allow John to visit Anne
b. ?. . . dat de dokter Jan Anne verbiedt te bezoeken

(14)

Although the full VP appears right of the extraposition verb verbiedt, objects from the daughter VP can still be
topicalized:

Wat
What

verbiedt
disallows

de dokter [VP Jan [VP Anne te geven
to give

? ]]
What does the doctor not allow John to give Anne?

(15)

This leads to the following productions for VE:

(ve) V(p; n; v) ! (VE=v) (NP=n) VP+te(p; �)
(ve-top) V(n; �; v) ! (VE=v) (NP=n) VP+te(�; �)S ) dat de dokter Jan verbiedt Anne te bezoekenNP ) de dokter VP(�; �) ) Jan verbiedt Anne te bezoekenV(�;Jan;verbiedt) ) Anne te bezoeken

VE ) verbiedt NP ) Jan VP+te(�; �) ) Anne te bezoekenV(�;Anne;bezoeken) ) �
VT ) bezoeken NP ) Anne

Figure 8: Derivation in fragment 1 of sentence (14a).

Fragment 2

To conclude the illustration, the next fragment splits up the nominal cluster into two parts, obtaining both a limited
description of partial extraposition verbs and some forms of partial ellipsis in cases of co-ordination.

A partial extraposition verb such as proberen is a liberal-minded verb that accepts anything between a full VP
and cross-serial order:a: . . . dat Jan probeert

tries
[VP Marie koffie

coffee
te geven

to give
]b: . . . dat Jan Marie probeert [V koffie te geven ]c: . . . dat Jan Marie koffie probeert [V te geven ](16)

Example a. may be solved by taking the rules for full extraposition (VE) verbs, but b. and c. suggest that the
nominal cluster Marie koffie of the V can be split up into at least two parts: one preceding and one following the PE
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verb. However, there is no indication that it cannot be scrambled into an arbitrary number of parts, in which case
the LMG formalism would be intrinsically unable to describe partial extraposition. The following “data” suggest
that nesting of partial extraposition verbs is very restricted:

(17)a: dat Jan Marie meent
believes

te hebben
to have

zien
seen

[V proberen
try

Anne koffie te laten
make

drinken
drink

]b: ?dat Jan Marie meent Anne te hebben zien [V proberen koffie te laten drinken ]c: ?dat Jan Marie meent Anne koffie te hebben zien [V proberen te laten drinken ]d: ?dat Jan Marie Anne meent te hebben zien [V proberen koffie te laten drinken ]e: �dat Jan Marie Anne meent koffie te hebben zien [V proberen te laten drinken ]f: dat Jan Marie Anne koffie meent te hebben zien [V proberen te laten drinken ]
that John believes to have seen Mary try to make Anne drink coffee

Cases (17b) and (17c) correspond to (16b), which is already disliked by many Dutch speakers, but cases (17d) and
(17e) are very questionable. In LMG there seems to be no choice but to require the objects that move leftward over
proberen to appear as an unaltered sequence in the resulting sentence, allowing all forms except (17e).

The second fragment replaces the nominal cluster by two parts, only one of which will be allowed to move
leftward over partial extraposition verbs. The grammar will produce all possible divisions of the objects into two
parts. V(n;m1;m2; v) produces a level one verbal projection missing the clustersn : empty or a single noun phrase that strictly selects for topicalized position.m1 : a nominal cluster that may cross partial extraposition verbs, or when consisting of a single NP,

may move to topicalized position.m2 : a nominal cluster that will appear at the rightmost possible position left of the verb that imme-
diately dominates it.v : the heading verb

The V rules given so far are modified as follows:

(vi)0 V(�; �; �; v) ! (VI=v)
(vt)0 V(�; n; �; v) ! (VT=v) (NP=n)
(aux)0 V(n;m1;m2; v) ! (Aux=v) w V(n;m1;m2; w)
(vr)0 V(p; nm1;m2; v) ! (VR=v) (NP=n) w V(p;m1;m2; w)
(ve)0 V(p; n; �; v) ! (VE=v) (NP=n) VP+te(p; �)
Note that the double rules for introducing topics have disappeared. Rules that introduce a new object n add that
object to the first nominal cluster. If the first nominal cluster m1 consists of just one NP, it may move to the second
nominal cluster (the shift rule) or to topicalized position (topic rule).6
(shift) V(p; �;m1m2; v) ! (NP=m1) V(p;m1;m2; v)
(topic) V(m1; �;m2; v) ! (NP=m1) V(�;m1;m2; v)
Partial extraposition verbs can now be accounted for as follows:

(pe) V(n;m1; �; v) ! (PE=v) m2 te w V(n;m1;m2; w)
The first nominal cluster m1 of the daughter V is percolated upward as the left nominal cluster of the mother, and
is hence allowed to skip PE verbs higher up, but can no more be broken into two parts, as suggested above. The
second nominal cluster m2 is yielded immediately after the PE verb.6The topic and shift rules enforce, by using a slash item, that the shifted subcluster n consists of just one NP. Here we assume the
non-existence of funny NP sequences such as Anne Frank, which can be read either as one NP or as two NPs. This would lead to problematic
sentences such as Anne Frank zag ik gisteren kussen.
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The following VP rules conclude the fragment.

(vp-v2)0 VP(n; v) ! m1 m2 V(n;m1;m2; v)
(vp-fin)0 VP(n; �) ! m1 m2 v V(n;m1;m2; v)
(vp-v2-conj)0 VP(n; v) ! m1 m2 V(n;m1;m2; v) en m3 V(n;m1;m3; v)
(vp-fin-conj)0 VP(n; �) ! m1 m2 v1 V(n;m1;m2; v1) en m3 v2 V(n;m1;m3; v2)
The conjunction rules now have a larger coverage than in the first fragment as they allow an initial part of the
nominal cluster to be shared between the conjuncts, producing sentences like (18):

Jan zag
saw

Marie koffie
coffee

drinken
drink

en
and

een koekje
a biscuit

eten
eat

.

John saw Mary drink coffee and (saw Mary) eat a biscuit.

(18)

7 Conclusion

This paper has sketched an approach to the description of languages with a highly complex surface structure,
together with a grammar for a fragment of Dutch to illustrate its strength and ease of use. Particular to this
approach w.r.t. other frameworks in both descriptive computational linguistics and formal language theory is that
at the same time (1) a variety of surface order phenomena is actually shown to be feasibly described in a single
grammar, and (2) the formalism used has been shown to be tractable. Although simple LMG has been shown
[Gro95b] to describe precisely the class of tractable languages, this of course does not imply that the formalism
allows such languages to be defined in a straightforward way.

The fragment sketched in this paper is still limited (e.g., it only partially describes what is covered in the
categorial account of [BvN95], on which the fragments discussed are largely based), and it remains interesting
to investigate whether the formalism is able to adequately describe larger fragments in a straightforward way.
Some readers may find the second literal movement grammar in section 6, which splits up the nominal cluster into
two parts, theoretically undefendable, while the verb order phenomena which remain to be described, such as the
inverted verb order [BvN95] in

. . . dat Jan het boek
the book

gelezen
read

moet
must

hebben
have

that John must have read the book

(19)

suggest that the same may have to be done to the verb cluster.
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